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GÜNTHER SAWITZKI

Abstract. We introduce the shorth plot for exploratory diagnos-
tics of distributions. The shorth plot is a graphical representation
of the length of the shorth, the shortest interval covering a certain
fraction of the distribution. Localising the shorth, i.e. requiring it
to contain specific data points, makes it usable for diagnostics.

The shorth can be defined as a functional which has an immedi-
ate empirical version. The empirical length of the shorth converges
to the theoretical value with rate n−

1
2 .
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1. Distribution Diagnostics

Exploratory diagnostics is one of the basic tasks in data analysis.
Graphical displays are essential tools. If the task can be narrowed
down, specialised displays may be available. For example, if there is
a model distribution F to be compared with, from a mathematical
point of view the empirical distribution Fn is a key instrument, and its
graphical representations such as PP -plots

x 7→ (F (x) , Fn (x))

or QQ-plots

α 7→
(
F−1 (α) , F−1

n (α)
)

are tools of first choice. If we consider the overall scale and location, box
& whisker plot is a valuable tool. This tool loses its sharpness for large
data sets, as the rules for identifying “out” and “far out” points seem to
reflect data sizes which were typical at the time box & whisker plots
were introduced, but this is a detail which might be fixed. The main
limitation is that box & whisker plots give a global view and ignore
any local structure. In particular, they are not an appropriate tool if it
comes to analyse the modality of a distribution. More specialised tools
are needed in this case, such as the silhouette and the excess density
plot, both tools introduced in [MS91].

Here we look for general purpose tools for the analysis of a distribution.
While we have some instruments for specific tasks, the situation is not
satisfactory if it comes to general purpose tools. PP -plots and QQ-
plots need considerable training to be used as diagnostic tools, as they
do not highlight qualitative features.

Focussing on the density, in contrast to the distribution function, leads
to density estimators and their visual representations, such as his-
tograms and kernel density plots. These however introduce another
complexity, such as the choice of cut points or bandwidth choice. The
qualitative features revealed or suggested by density estimation based
methods may critically depend on bandwidth choice. Moreover, esti-
mating density is a more specific task than understanding the shape of
a density. Density estimation based methods are prone to pay for the
initial smoothing steps in terms of slow convergence or large fluctua-
tion, or disputable choices of smoothing.

We will use the length of the shorth to analyse the qualitative shape
of a distribution. The shorth is the shortest interval containing half
of a distribution. The length of the shorth is a functional which is
easy to estimate, with convergence of rate n−

1
2 , and gives a graphical

representation which is easy to interpret.
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We will start with the classical definition of a shorth. To overcome the
handicaps of other methods, we have to extend the classical definition
to supply localisation, and to allow for multi scale analysis.

2. The Length of the Shorth

The shorth is the shortest interval containing half of a distribution.
More general, the α-shorth is the the shortest interval containing an
α fraction of the distribution. The shorth was originally introduced
in the Princeton robustness study as a candidate for a robust loca-
tion estimator, using the mean of a shorth as an estimator for a mode
[ABH+72].

As a a location estimator, it performed poorly. The mean of a shorth
as an estimator of location has an asymptotic rate of only n−1/3, with
non-trivial limiting distribution. [ABH+72, p. 50] [SW86, p. 767].
Moreover, the shorth interval is not well defined, since there may be
several competing intervals.

However, as Grübel [Grü88] has pointed out, the length of the shorth

has a convergence rate of n−
1
2 with a Gaussian limit. The critical

conditions are that the shorth interval is sufficiently pronounced (see
[Grü88, section 3.3]). Essentially this means that the shorth interval
must not be in a flat part of the distribution. While the shorth position
is not a good candidate as a location estimator, the length of the shorth
qualifies as a reasonable candidate for scale estimation.

The length of the shorth is a functional which can be localised, thus
providing a tool for local diagnostics. We define:

Definition 1. The shorth length at point x for coverage level α is

Sα(x) = min{|I| : I = [a, b], x ∈ I, P (I) ≥ α}.

We get the length of the shorth as originally defined by taking infx S0.5(x).

The definition has a functional form which can be applied to theoretical
as well as empirical distributions. The definition in terms of a theo-
retical probability P( · ) has an immediate empirical counterpart, the
empirical length of the shorth

Sn,α(x) = min{|I| : I = [a, b], x ∈ I, Pn(I) ≥ α}

where Pn( · ) is the empirical distribution.
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The get a picture of the optimisation problem behind the shorth length,
we consider the bivariate function

a, b 7−→ I = [a, b] 7−→
(
|I| , P (I)

)
where a ≤ b.

This is defined in the half space a ≤ b above the diagonal. The level
curves of |I| are deterministic parallels to the diagonal. The level curves
of P (I) depend on the distribution. The shorth at level α minimises
|I| in the area above the level curve at level α, i.e. P(I) ≥ α. Going
to the empirical version replaces the level curves of of P (I) by those of
Pn(I). The theoretical curves for the Gaussian distribution and for a
Gaussian sample are shown in figure 1. Localising the shorth at a point
x restricts optimisation to the top left quadrant anchored at a = b = x.

The increasingly flat level curves for P ([a, b]) = const in figure 1 illus-
trate why the location of the shorth does not have satisfactory stat-
tistical properties while the length of the shorth has good asymptotic
behaviour.

normal distribution
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Figure 1. The shorth length as an optimisation prob-
lem: minimize |[a, b]|, under the restriction P ([a, b]) ≥ α.
Localising at x restricts the optimisation to the quadrant
top left of x (shaded grey).

The inverse optimisation problem is to find the maximal coverage which
can be achieved by a given length:

δ 7−→ sup{P (I) : |I| ≥ δ}
together with its localised and/or empirical version. The relation be-
tween the shorth length and its inverse is extensively used in Grübel’s
analysis of the asymptotics of the (unlocalised) shorth. A modified
version of Grübel’s proof carries over to the localised shorth, provided
there are no flat parts in the distribution, giving a n−

1
2 asymptotics of

the empirical shorth length to the theoretical shorth length.
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2.1. Elementary Properties. Here and in the following, we assume
a sample X1, . . . , Xn from some distribution P with distribution func-
tion F . Let Pn be the empirical distribution and Fn the empirical
distribution function. The k-th order statistics is denoted by X(k).

Remark 1. (invariance) For all α

x 7→ Sα(x)

is invariant under shift transformations and equivariant under scale
transformations, that is for x′ = ax + b, for the transformed shorth
length S ′ we have

S ′α(x′) = aSα(x).

Remark 2. (monotonicity) For all x,

α 7→ Sα(x)

is monotonously non decreasing in α.

If F is continuous with density f , additional properties are guaranteed:

Remark 3. (minimising intervals) If F is continuous, then for any α ∈
[0, 1] and any x ∈ R, there is a (possibly infinite) interval I such that
x ∈ I, P(I) = α with |I| = Sα(x).
If α < 1, the interval is finite and contained in [x− Sα(x), x+ Sα(x)].

Remark 4. (continuity) For a continuous distribution function F ,

(x, α) 7→ Sα(x)

is continuous.

Remark 5. (strict monotonicity) For a continuous distribution function
F , for each x ∈ R,

(x, α) 7→ Sα(x)

is strictly increasing in α on (0, 1).

In the limit, limα→0 Sα(x) = 0.

In particular, for the empirical version, Sn,α(x) = 0 for α ≤ 1
n
.

2.2. Computing the Empirical Shorth Length. To use empirical
distribution functions, the discontinuous case is of interest.

Remark 6. (interpolation) If x0 < x < x1 and P( (x0, x1) ) = 0, then

Sα(x) =
(
Sα (x0) + ∆0

)
∧

(
Sα (x1) + ∆1

)
,

where x = x0 + ∆0 = x1 −∆1.
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Remark 7. (algorithm) For α, 0 ≤ α ≤ 1, let

∆α = min

{
k :

k + 1

n
≥ α

}
.

Then

Sn,α(Xi) = min{X(j+∆α −X(j) : 1 ≤ j ≤ i ≤ j + ∆α ≤ n}.

Using a stepwise algorithm, a further reduction of complexity is possi-
ble: let

Ci := {I : X(i) ∈ I, P(I) ≥ α}

be the set of candidate intervals at X(i) for level α. Then

Sn,α(Xi) = min{|I| : I ∈ Ci}.

Unless boundary corrections apply, we have

Ci = Ci−1 \ {[X(i−1−∆α), X(i−1)]} ∪ {[X(i), X(i+∆α)]}.

This gives an algorithm with linear complexity in n.

An additional reduction is possible using the monotonicity in α (remark
5), but this may not be worth the effort.

3. The Shorth Plot

Definition 2. The shorth plot is the graph of

x 7→ Sα(x)

for a selection of coverages α.

The empirical shorth plot is

x 7→ Sn,α(x).

See figure 2.

Mass concentration now can be represented by the graph of x 7→ Sα(x).
A small length of the shorth signals a large mass concentration. To
make the interpretation easier, we prefer to invert the orientation of
the axis so that it is aligned with density axis. This will be used in the
subsequent figures.
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Figure 2. Theoretical shorth length and shorth length
for a sample of 50 normal variates for α = 0.5. Note:
different scales are used.

3.1. Display Details. Several choices can to be made for the visual
representation. The common conception seems to view a distribution
represented by its density. From a mathematical point of view, plotting
x 7→ 1/Sα(x) would be first choice, since this is approximately propor-
tional to the local average density. This however is an infinitesimal
approximation. It tends to overemphasise peaks (see figure 3), and be-
comes useless for point masses. Using just a downward orientation for
the y-axis avoids the need to special case point masses while keeping
the qualitative impression.

To make comparison between different data sets easier, we can use the
classical shorth length minx S0.5(x) as a scale estimator and remove the
scale dependency by taking the quotient. This quotient

x 7→ Sα(x)

minx′ S0.5(x′)

is called the standardised short length . The only difference is the scale
labeling. In these notes, we do not use standardized shorth length, but
use the original scales.

Instead of the exact interpolation as in remark 6, we use a linear inter-
polation. The loss of information is negligible.

Figure 4 gives examples of the shorth plot for the uniform, normal and
log-normal distribution with varying sample sizes.

Varying the coverage level α as in figure 5 gives an impression of the
mass concentration. Small coverage levels (the top curves in figure 5)
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Figure 3. Shorth length (left) and 1/Shorth length
(right) for a sample of 50 normal variates. The axis for
the shorth is pointing downward. Note: different scales
are used.

give information about the local behaviour, in particular near modes.
High coverage levels give information about skewness the overall dis-
tribution shape. A dyadic scale with steps chosen based on the sample
size, e.g., 0.125, 0.25, 0.5, 0.75, 0.875, is a recommended choice. The
monotonicity (remark 2) allows the multiple scales to be displayed si-
multaneously without overlaps, thus giving a multi resolution image of
the distribution.
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Figure 4. x 7→ Sn,0.5(x) for a uniform, a normal, and a
log-normal distribution with varying sample sizes. Note:
Different scales are used for the shorth length.



10 GÜNTHER SAWITZKI

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

uniform, n=50

ls
ho

rt
h

−2 −1 0 1 2

4
3

2
1

0

normal, n=50
ls

ho
rt

h

0 1 2 3 4 5

5
4

3
2

1
0

lognormal, n=50

ls
ho

rt
h

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

uniform, n=200

ls
ho

rt
h

−3 −2 −1 0 1 2

4
3

2
1

0

normal, n=200

ls
ho

rt
h

0 2 4 6 8 10 12

12
10

8
6

4
2

0
lognormal, n=200

ls
ho

rt
h

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

uniform, n=1000

ls
ho

rt
h

−3 −2 −1 0 1 2 3

5
4

3
2

1
0

normal, n=1000

ls
ho

rt
h

0 5 10 15

20
15

10
5

0

lognormal, n=1000

ls
ho

rt
h

Coverage αα

 
 
 
 
 

0.125
0.250
0.500
0.750
0.875

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

uniform, n=10000

ls
ho

rt
h

−4 −2 0 2

5
4

3
2

1
0

normal, n=10000

ls
ho

rt
h

0 10 20 30 40 50

60
50

40
30

20
10

0

lognormal, n=10000

ls
ho

rt
h

Coverage αα

 
 
 
 
 

0.125
0.250
0.500
0.750
0.875

Figure 5. x 7→ Sn,α(x) for a uniform, a normal and a
log-normal distribution with varying sample sizes.
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4. Examples

4.1. Old Faithful Geyser. As a first example, we use the eruption
durations of the Old Faithful geyser. The data is just one component of
a bivariate time series data set. Looking at a one dimensional marginal
distribution ignores the process structure. However these data have
been used repeatedly to illustrate smoothing algorithms (figure 6), and
we reuse it to illustrate our approach (see figure 7). This is a good-
natured data set showing two distinct nodes with sizeable observation
counts, and some overall skewness.
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Figure 6. (left) Eruption durations of the Old Faithful
geyser: density estimation (R defaults)

Figure 7. (right) Eruption durations of the Old Faith-
ful geyser: shorth plot

The contours of the shorth plot for high coverage levels (α > 50%)
just show the overall range of the data. The 50% level indicates a
pronounced skewness. The top levels (25%, 12.5%) reveal that we have
two modes, with a comparable coverage range. This is not obvious
from the density plot, since the density plot mixes information about
local heights attributable to modes with information about the mixture
proportions. Density estimators with varying bandwidth or histograms
with varying parameters could reveal these details (see figure 8). The
multi scale property of the shorth plot allows to combine the aspects
in one picture.

4.2. Melbourne Temperature Data. R. Hyndman pointed out the
bifurcation to bimodality in the Melbourne temperature data set [HBG96].
We use an extended version of the data set1 and analyze the day by

1Melbourne temperature data 1955-2007, provided by the Bureau of Meteorology,
Victorian Climate Services Centre, Melbourne.
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Figure 8. Eruption durations of the Old Faithful
geyser: density estimation with varying bandwidth. The
density plot mixes information about local heights at-
tributable to modes with information about the mixture
proportions.

day difference in temperature at 15h (the daily report reference time)
conditioned on today’s emperature and pressure at the reference time.
The shorth plot view is in figure 9. The full picture reveals a cusp-
type bifurcation. Figure 10 shows the shorth plot for the temperature
difference at 15h (the daily report reference time) to next day’s tem-
perature, conditioned on today’s temperature and pressure. It reveals
the modality split as well as the skewness which is pressure dependent.

−15 −10 −5 0 5 10 15

25
20

15
10

5
0

21.7 ≤≤ T,T ≤≤ 25.6°°C

diffT, n=2498

ls
ho

rt
h

Coverage αα

 
 
 
 
 

0.125
0.250
0.500
0.750
0.875

−20 −15 −10 −5 0 5 10 15

25
20

15
10

5
0

25.6 ≤≤ T,T ≤≤ 32°°C

diffT, n=1732

ls
ho

rt
h

−25 −20 −15 −10 −5 0 5

25
20

15
10

5
0

T ≥≥ 32°°C

diffT, n=696

ls
ho

rt
h

Figure 9. Shorth plot at coverage levels α =
0.125, 0.25, 0.5, 0.75, 0.875 for Melbourne day by day
temperature difference at 15:00h conditioned at today’s
temperature. A bifurcation to bimodality occurs at high
temperatures.
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Figure 10. Plot matrix of shorth plots for varying
temperature ranges (vertical) and varying pressures
(horizontal). Shorth plots at coverage levels α =
0.125, 0.25, 0.5, 0.75, 0.875 for Melbourne day by day
temperature difference at 15:00h, conditioned at today’s
temperature and pressure.

4.3. Chondrite Data. The chondrite data set was used in to illustrate
a strategy to hunt for modes in [GG80]. This data set is pressing
the limits for the shorth plot since it has a very low sample size with
presumably three modes (see figure 12).

Using the methods of [GG80] would allow to reveal a third mode, but it
is subject to discussion whether this is over-using the data dependency.
The shorth, as a general purpose method, gives figure 12. Of course
it would be possible to isolate a third mode by including a smaller
coverage level.



14 GÜNTHER SAWITZKI

15 20 25 30 35 40

0.
00

0.
02

0.
04

0.
06

N = 22   Bandwidth = 2.222

D
en

si
ty

20 25 30 35

15
10

5
0

silicate content, n=22

ls
ho

rt
h

Coverage αα

 
 
 
 
 

0.125
0.250
0.500
0.750
0.875

Figure 11. (Left) Silicate in chondrite: density estimation

Figure 12. (Right) Silicate in chondrite: shorth plot.
Note: different scales are used.

For comparison, we add the silhouette plot suggested in [MS91] as
figure 13. The silhouette plot, specialised at detecting modes, clearly
outperforms the shorth plot for this extremely small data set. But
although the short plot is a general purpose plot, it hints at a third
mode at all levels. If it goes to level 12.5% it can trace the third mode,
and clearly identifies it for lower coverage levels.

Figure 13. Silicate in chondrite: silhouette plot
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4.4. Hartigan’s Hat. This example is a mixture in proportions 3 :
2 : 3 of a uniform on

(
0, 1

4

)
, on

(
1
4
, 3

4

)
, and on

(
3
4
, 1

)
used in [HH85]

to illustrate the dip test of unimodality. See figure 14. For a general
analysis, it is a challenge because it combines bimodality with flat parts
in the distribution, and a relatively low density in the “dip”. Only 25%
of the distribution fall in the“dip”, and thus it must be hidden in higher
coverages for the shorth plot.

In this situation, kernel density estimation performs poorly, since it is
heavily degraded by boundary effects which cannot cope with the flat
parts of the distribution. The shorth plot hints at the flat parts on the
outside, but has difficulties identifying the flat middle part.
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Figure 14. Hartigan’s Hat
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5. Extensions

The shorth length is a well defined concept in one dimension. The gen-
eralisation to higher dimensions is the volume of a container covering
a proportion of the data. In higher dimensions however there is no
distinct class of containers to be considered. So additional choices have
to be taken, such as using spheres or ellipsoids of minimal volume.

As with QQ-plots and PP -plots, the generalisation to the two sample
case is immediate.

An open question is whether the shorth length approach can be carried
over to a regression context.

6. Related Approaches

The shorth plot is related to kernel density estimation with variable
bandwidth. It can be seen as a k-nearest neighbour approach. But
in contrast to density estimation, it focusses on a concentration func-
tional. Density is an infinitesimal concept. Mass concentration however
is a local concept, but not an infinitesimal concept. As a consequence,
density has no empirical counterpart, whereas mass concentration has.
This makes the shorth length easier to handle for data analytical pur-
poses.

The shorth plot combines information on a series of coverage levels. For
smoothed density estimators, it would be necessary to use a series of
bandwiths. But even using a series of bandwiths, the density estimators
would not easily reveal the features which are apparent in the shorth
plot.

The relation to mass concentration is shared with the silhouette and
the excess density plot ([MS91]) or Hyndman’s highest density regions
([Hyn96]). The view however is complementary. Silhouette and the
excess density focus on concentration, but the shorth on local spread.
Silhouette and the excess density target at detecting modality and are
model based for a global model (e.g., unimodal vs. bimodal). The
shorth however has a local perspective, and is model independent.

P. A. and J. W. Tukey suggested a “balloon plot” in [TT81] (in [Bar81],
reprinted in [Tuk88]). This is most closely related to the shorth plot.
The main difference is that the balloons are centred at data points.
The shorth plot does not use this centring, thus avoiding unnecessary
random fluctuation.
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The SIzer approach by Chaudhuri and Marron [CM99] is related in
spirit to the shorth plot. It tries to present a multiscale representation
for smoothing while controlling the artifacts of smoothing by going to
a probability scale. The shorth plot avoids the initial smoothing step
and is strictly data based.

7. Summary

The shorth plot is a means to investigate mass concentration. It is
easy to compute, avoids the bandwidth selection problems, and allows
scanning for local as well as for global features of the distribution. The
good rate of convergence of the shorth estimator makes it useful already
at moderate sample sizes.
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